
1

MATLAB Introduction

Accessing Matlab .. 1
Matlab Interface ... 1
The Basics .. 2
Variable Definition and Statement Suppression ... 2
Keyboard Shortcuts ... 3
More Common Functions ... 4
Vectors and Matrices .. 4
Creating a Script .. 6
Solving (Linear) Equations ... 7
Mathworks Website .. 8

Cody .. 8

Accessing Matlab
• Available on all EWS machines
• Access through Citrix Reciever (https://it.engineering.illinois.edu/ews/lab-information/remote-

connections/connecting-citrix)
• Purchase through Mathworks: Base cost: $49, Suite: $99

(https://www.mathworks.com/store/link/products/student/new?s_tid=ac_buy_sv_cta)

Matlab Interface
When you open Matlab you will see the following (note that the windows within Matlab maybe
arranged slightly differently)

Calculations can be done either in the "Command window" or the "Editor". The command window is a
temporary place to see your commands, the commands themselves are saved in the "Command
history", but not the answers. The solution to the calculation is displayed in the "Command Window"
and stored in the "Workspace". If you do not assign a variable name to the calculation, the answer is
stored in the default variable name ans

https://it.engineering.illinois.edu/ews/lab-information/remote-connections/connecting-citrix
https://it.engineering.illinois.edu/ews/lab-information/remote-connections/connecting-citrix
https://www.mathworks.com/store/link/products/student/new?s_tid=ac_buy_sv_cta

2

The Basics
MATLAB is a high-level interpreted language, and uses a “read-evaluate-print” loop: it reads your
command, evaluates it, then prints the answer. This means it works a lot like a calculator:

>> 1+2

ans =

3

Here, it read the command 1+2, evaluated it to 3 and printed that. It also stores the answer from that in
the variable ans so that you can refer to it in the next command if you want.

>> 1.5^2 + 2.5^2

ans =

8.5000

>> sqrt(ans)

ans =

2.9155

Be careful: after executing the second line, ans now has a new value. This also shows the syntax for a

power (𝑎𝑏 is evaluated using a^b) and square root using the sqrt function. Much of the syntax
follows mathematical syntax that you would expect: +, -, *, /, ^, sqrt, etc.

Variable Definition and Statement Suppression
You can create your own variables, and assign them values using =

>> a = 1 + 2

a =

3

Once declared, the variable can be used in other statements:

>> b = a - 5

b =

-2

Statements can be suppressed with the ; symbol so that the result is not printed to the command

window. The result can be viewed by calling the variable name or by opening the variable from the
workspace variables window.

>> c = 1.3^2 – 1;

>>

3

Keyboard Shortcuts

Help
If you’re not sure what a command does, type help command name. If you can’t remember if cos
uses radians or degrees, then help cos will tell you. You can also search the documentation in the
upper right hand corner.

Tab completion
If you’re typing a command like cos, when you hit the TAB key, it will give you a list of commands
that start with the letters cos.

Command history
You can use the up and down arrows to move through previous commands that you’ve entered.
You can then press ENTER to rerun that command exactly, or move the cursor left and right in the
line and make edits (e.g., if you made a mistake you need to correct). This is useful if you’ve made
an error with a variable value and need to reevaluate an expression.

4

More Common Functions
There are a variety of functions in Matlab, including absolute value, abs, and most trigonometric
functions such as: sin, cos, tan. You can also use pi instead of typing out an approximation such
as 3.14, but be careful: it can be overwritten, do not use it as a variable.

It is also important to note that default trigonometric functions are in radians, adding a d at the end of

the expression will ensure it is evaluated in degrees.

>> rad = sin(30)

rad =

 -0.988031624092862

>> deg = sind(30)

deg =

 0.500000000000000

If you want to switch between radians and degrees before you perform evaluations you can use
rad2deg or deg2rad. You can also find the inverse of trigonometric functions: asin, acos,
and atan. These can be evaluated in degrees in the same way as before.

In TAM 212, it may be useful to know the function atan2, use help function to learn more.

Vectors and Matrices
MATLAB (MATrix LABoratory) is optimized for working with vectors and matrices. As such, it has a nice
syntax for making vectors and matrices easily, using the [] syntax

>> A = [1 2]

A =

1 2

>> B = [3,4]

B =

3 4

>> M = [5 6 ; 7 8]

M =

5 6

7 8

You can separate entries in a vector using a space or a comma (and can mix and match: [1 2,3]),and

you separate the rows in a matrix using a semicolon. You can then access the values inside a vector (𝑣𝑖)
or matrix (𝑀𝑖𝑗) with ()

>> B(1)

ans =

3

>> M(1,1)

ans =

5

5

The indices follow row-column order, so that 𝑀𝑖𝑗 is M(i,j), and the indices begin at 1. In addition to

accessing entries, you can also assign values.

>> M(2,1) = 10

M =

5 6

10 8

If you want a row or column vector out of a matrix, you use the : operator ; then M(1,:) gives you
the row 𝑀1𝑗, while M(:,1) gives you the column 𝑀𝑖1.

>> M(1,:)

ans =

5 6

>> M(:,1)

ans =

5

10

You can do things like get the dot product of 𝑎⃗ and 𝑏⃗⃗ with dot(a,b); you can get the cross product

𝑎⃗×𝑏⃗⃗ with cross(a,b). You can get the transpose of a vector or matrix with the ’ operator

>> B'

ans =

3

4

>> M'

ans =

5 10

6 8

>> M*B'

ans =

39

62

Note: the transpose of a row vector (like [1 2]) is a column vector (like [1;2]). To right-multiply a
vector times a matrix (like 𝑀 · 𝑣⃗), the vector needs to be a column vector. You can also use this to take
dot-products if you want: if A and B are row vectors, then dot(A,B) is the same as A*B’.

For a matrix, you can access the determinant with det(M) and the trace (sum along the diagonal) with
trace(M)

>> det(M)

ans =

-20

>> trace(M)

ans =

13

6

Creating a Script

Scripting is a valuable tool in Matlab. Instead of entering each command line-by-line in the command
window, a script allows all lines to be saved and run multiple times without having to scroll through the
"command history".

Commenting
If you want to keep track of what you are doing or do not want a line of code to run, you can
use the % to comment out a line. This can be done to an entire line, or just a portion of the
line:

Two %% symbols indicates a section header. This is useful for separating and organizing your
code. These sections can also be run individually by pressing the “Run Section”.

TAM 2XX Specific Tips
Generate a script for each homework assignment or quiz. Separate each problem with two %%
symbols and copy and paste your given variables underneath the problem header. If a problem
requires a unit conversion, you should do this conversion after pasting the given variables. This
will allow you to flip through multiple variations of the problem without having to change the
given variables every time.

- Parenthesis: You should be obsessive about this. If you are raising something to a power,
make sure the entire base is wrapped in parenthesis as well as the power. If you are
dividing, make sure the numerator and denominator are both individually wrapped in
parenthesis. Your code should look like you do not trust Matlab's built-in order of
operations.

- Units: Do not trust the Matlab entries given in a problem. It is your responsibility to check
the units in your problem. If everything is given in 𝑁 and 𝑚, but the answers ask
for 𝑘𝑁 and 𝑚𝑚, then it is your responsibility to convert the answer. The Matlab input might
also be missing a 10−6 or might give the units in 𝑚 when the problem statement was
in 𝑚𝑚, so again, be careful about checking these things before submitting your answer.

- Format long: PrarieLearn grades homework using this setting. If you are not using a script,

be sure to type this into the "Command Window" before solving your problem. If you do

generate a script, as you should, put this at the top so that it runs every time.

An example script is provided on the following page:

7

Solving (Linear) Equations
We can use MATLAB to solve equations, including systems of equations. For our purposes, we will
almost exclusively deal with linear equations. To start, we define a 3x3 matrix A and a 3x1 matrix b:

>> A = [1 2 1; 2 2 3; -1 -3 0]

A =

 1 2 1

 2 2 3

 -1 -3 0

>> b = [0 ;3; 2]

b =

 0

 3

 2

8

This is a linear problem in the matrix form 𝐴𝑥 = 𝑏. We can solve it using the linsolve function:

>> x = linsolve(A,b)

x =

 1

 -1

 1

 Alternatively, you can use the backslash operator:

>> x = A\b

x =

 1

 -1

 1

Mathworks Website
Anything not covered in this brief introduction can be found on the Mathworks website:

https://www.mathworks.com/

Things that may be useful in the future: breakpoints, differentiation, integrals, functions, plotting, for
loops, while loops, timing, etc.

Cody
Mathworks provides a free training tool called Cody. It does not require a license for Matlab, so
you can practice without going to an EWS machine, setting up Citrix, or paying yourself.

https://www.mathworks.com/matlabcentral/cody/

Got to the link above, sign up for an account, and look through the “Problems” tab. Sorting by
“Solvers High-Low” will show you the problems with the most solutions, the easiest ones.

In each problem, they explain what you have to do and ask you to click the “Solve” button. This
will open up a Matlab function in your browser as shown in the image below. It will provide you
with code, however, you will have to change the lines in the function to solve the problem.

https://www.mathworks.com/
https://www.mathworks.com/matlabcentral/cody/

